PAINEL DATA MODELS

PROF. DR. VASCONCELOS REIS WAKIM

Tipos de Dados

Concepts rescuing

There are 3 kind of data: Cross-Section, Panel Data and Time Series;

In the specific case of the Panel data \rightarrow we have the same unit of analysis or different unit of analysis in the long time

The panel data model can be called: pooled data

Why we should use panel data?

- What the advantage of the used of panel data?
 - 1) Control of the effects do not unobserved;
 - 2) Control the heterogeneity problem;
 - As we have cross-section + time series → more informative data; more variability, less collinearity between variables, more liberty degree, and more efficiency (Gujarati; Porter, 2011);
 - 4) Panel data model are more adequate to examine the change dynamic;
 - 5) The panel data model can be reflet better the facts than a cross-section model

Characteristic of panel data model

- We have: balanced panel; unbalanced panel; short panel or long panel
- **Balanced Panel:** the de panel is balanced if exist in the data all observation (time and units);
- **Unbalanced Panel:** the de panel is unbalanced if not exist in the data some observation (time and units)
- Short Panel: the number of units of analysis (N) is higher than the number of periods (T) → N < T
- Long Panel: the number of units of analysis (N) is minor than the number of periods
 (T) → N > T

Options to estimate the panel data model

- Estimating by Pooled Data;
- OLS with dummy variable;
- Fixed Effect Model; and
- Randon Effect Model.

Estimating by Pooled Data

 In this case, we just group the data as was a big database, and estimating it as an OLS - we ignore if exist a cross-section and/or times series;

$$Y_{it} = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$$

Estimating by Pooled Data

• In this case, we just group the data as was a big database, and estimating it as an OLS - we ignore if exist a cross-section and/or times series;

$$Y_{it} = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$$

- i = it's the unit of analysis that we are analyzed
- t = it's the period of analysis that we are analyzed

Estimating by Pooled Data $Y_{it} = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$

- We presuppose that each coefficient are the same all sample;
- All units of analysis are equal to other units there aren't differences between they;
- It's hard to keep this presuppose;
- Assume that the explanatory variable is totally exogenous

 current value does
 not depend on the past value

Estimating by Pooled Data $Y_{it} = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$

 The results of the pooled model are totally significant, and the R2 statistic is very high, but the Durbin-Watson (DW) statistic é very low → DW test it's for autocorrelation of the residuals

• This way, suggest no existing spatial correlation between the resids. Or can be error of the model specification

Estimating by Pooled Data $Y_{it} = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$

 In this kind of model (Pooled) we are camouflaging heterogeneity that existing between the units of analysis.

• If X_{3t} it's invariant in the time, we cannot observe directly your effect over the Y_{it} , but we can obtain your effect if rewrite the equation as:

$$Y_{it} = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \alpha_i + u_{it}$$

Estimating by Pooled Data

$$Y_{it} = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \alpha_i + u_{it}$$

• Where α_i it's the unobserved effect or heterogeneity;

• If estimating the Pooled model, we are ignoring this effect and all the units of analysis will be considered equal \rightarrow what it's not true

• How to say Gujarati and Porter (2011) the heterogeneity is a nuisance parameter and must be treated

OLS WITH DUMMY VARIABLE

OLS WITH DUMMY VARIABLE

• This kind of model considers the heterogeneity that exists between the variables. Look at the equation:

$$Y_{it} = \beta_{0i} + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$$

- β_{0i} show that each intercept of each unit of analysis can be different
- This difference can reflect the aspects do not unobserved of each unit

OLS WITH DUMMY VARIABLE $Y_{it} = \beta_{0i} + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$

• We can call this kind of model a Fixed Effect, because exist one or more variable which is invariable in the time

• Each intercept of each unit of analysis do not variant in the time

• But if we write β_{0i} as β_{0it} this suggests that constant is variant in the time

 But how to capture the heterogeneity among the units of analysis? We can use dummy variables

OLS WITH DUMMY VARIABLE $Y_{it} = \beta_{0i} + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$

• We rewrite equation above as:

$$\begin{split} Y_{it} &= \alpha_0 + \alpha_1 D_{1t} + \alpha_2 D_{2t} + \alpha_3 D_{3t} + \beta_1 X_{1t} \\ &+ \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it} \end{split}$$

 We must pay attention --> Only with the rule of the dummy variables → we have that exclude 1 dummy to do not to fall in the dummies variable trap → perfect collinearity

OLS WITH DUMMY VARIABLE $Y_{it} = \alpha_0 + \alpha_1 D_{1t} + \alpha_2 D_{2t} + \alpha_3 D_{3t} + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$

- The effect of unit 1, for example, it's the sum between $(\alpha_0 + \alpha_1)$, so α_2 and α_3 show the differences that exist among the unit of analysis
- $\alpha_0 + \alpha_1 \rightarrow$ gives the intercept of unit 1
- $\alpha_0 + \alpha_2 \rightarrow$ gives the intercept of unit 2
- $\alpha_0 + \alpha_3 \rightarrow$ gives the intercept of unit 3

REMEMBER, if you put all dummies variables, you must exclude the intercept of the equation! Not to fall in the dummies variable trap

PERFECT COLLINEARITY!

OLS WITH DUMMY VARIABLE Y_{it}

$= \alpha_0 + \alpha_1 D_{1t} + \alpha_2 D_{2t} + \alpha_3 D_{3t} + \beta_1 X_{1t}$ $+ \beta_2 X_{2t} + \beta_3 X_{3t} + e_{it}$

- ATTENTION: If we estimating the model above, we loss much liberty degrees
- This is do not recommended
- We can estimate the model using the **fixed-effect** model
- The Stata command is:
- Xtreg $Y_{it} X_{1t} X_{2t} X_{3t}$, fe (Where fe = fixed-effect)

RANDON EFFECT MODEL

RANDON EFFECT MODEL $Y_{it} = \beta_{0i} + \beta_1 X_{it} + \beta_2 X_{it} + \beta_3 X_{it} + e_{it}$

• In the equation above, β_{0i} it's not fixed, we should, now, presuppose that he is aleatory $\rightarrow \beta_0$ without the superscript I

•
$$\beta_{0i} = \beta_0 + \varepsilon_i$$
 (2)

• With this, we say, that our sample was collected of the one universe bigger and that they have a mean common value of the intercept (β_0), and each difference between units to be in the error term.

(1)

RANDON EFFECT MODEL

 $Y_{it} = \beta_{0i} + \beta_1 X_{it} + \beta_2 X_{it} + \beta_3 X_{it} + e_{it} (1) \quad \beta_{0i} = \beta_0 + \varepsilon_i (2)$

• If we replace (2) in (1), equation 1 can be rewritten as:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 X_{it} + \beta_3 X_{it} + e_{it} + \varepsilon_i$$
$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 X_{it} + \beta_3 X_{it} + w_{it}$$

• Where:

$$w_{it} = e_{it} + \varepsilon_i$$

RANDON EFFECT MODEL

- $w_{it} = e_{it} + \varepsilon_i$
- e_{it} have the combination of the time series with cross-section; and ε_i its the error term of each individual

• The difference between fixed-effect and Random effect model is: the fixedeffect model has an intercept common to all variables, in your turn, the random effect, the intercept represents the value means of all intercepts

• We'll see that exist so much resemblance between the results of the fixed-effect and random effect models. However, what model to estimates?

• If not exist differences significant between fixed-effect and random-effects models, what model we should estimates?

• To answer this question, we should use the Hausman Test (1974)

• The Null Hypothesis (H_0) of the Hausman Test is that the estimators of the fixedeffect and random effect model do not differ much

• The Null Hypothesis (H_0) of the Hausman Test is that the estimators of the fixedeffect and random effect model do not differ much

• If the p-value of the Hausman test is significant, we are accepting the Null Hypothesis (H_0) what signified which the random effect is better than fixed-effect;

• However, if p-value of the Hausman test do not significant, we are rejecting the Null Hypothesis (H_0) what signified which the fixed-effect is better than the random effect;

- **ATTENTION:** If the p-value of the Hausman test is significant, we are accepting the Null Hypothesis (H_0) what signified which the random effect is better than fixed-effect;
- So we must compare the random effect with the pooled data model, for this, we should use again the Hausman test. In this case:
- If the p-value of the Hausman test is significant, we are accepting the Null Hypothesis (H_0) what signified which the random effect is better than pooled model

• However, if the p-value of the Hausman test do not significant, we are rejecting the Null Hypothesis (H_0) what signified which the pooled model is better than random effect

• In this case, when pooled model is better than the random effect, we must estimate the traditional OLS

- The commands in the Stata is:
- xtreg Y X1 X2 X3, fe
- estimates store fe (stored in the memory of the program)
- xtreg Y X1 X2 X3, re
- estimates store re (stored in the memory of the program)
- hausman fe re, sgimamore
 - H_0 The random effect is better
 - H_1 The fixed-effect is better

P-value significative \rightarrow accepts H_0 P-value not significative \rightarrow rejects H_0

